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The Takagi±Taupin theory is extended by synthesizing it with the eikonal theory

in a uni®ed space±time approach based upon microscopic electromagnetism.

The principal goal is the description of X-ray diffraction in a crystal undergoing

subpicosecond and few-femtosecond changes.

1. Introduction

The dynamical theory of X-ray diffraction is used for the

description of coherent X-ray scattering in large perfect

crystals. The theory has been extended in several ways to deal

with slight disturbances of the crystal lattice. Most notable

among these are: (i) Kato's statistical dynamical diffraction

theory (Kato, 1980a,b); (ii) the ray±optical methods of

Penning and Polder (Penning & Polder, 1961; Okkerse &

Penning, 1963) and the eikonal theory (Kato, 1963, 1964a,b;

Bonse, 1964; Bonse & Graeff, 1973); and (iii) the wave±optical

method of Takagi and Taupin (Takagi, 1962, 1969; Taupin,

1964). All of these extensions were originally formulated for

static disturbances of the crystal lattice. Quasistatic distur-

bances due to, e.g., ultrasound excitation, were also investi-

gated (Entin, 1978; Entin & Assur, 1981; Zolotoyabko &

Panov, 1992; Zolotoyabko et al., 1992, 1994; Zolotoyabko &

Sander, 1995).

With the motivation of scienti®c interest and the advent of

short-pulse X-ray sources, the focus of interest has recently

turned towards time-dependent X-ray diffraction. Most of the

science addressed by subpicosecond X-ray pulses is that of the

elementary processes of chemistry and condensed matter

dynamics, such as molecular or lattice vibrations, non-

equilibrium phase transitions and ultimately, at time scales

down to a few femtoseconds, the electronic scattering and

decoherence times in photoexcited molecules and semi-

conductors. The scienti®c cases prepared for the X-ray free-

electron laser (XFEL) projects (Materlik & Tschentscher,

2001) give an overview of the science envisioned with short-

pulse X-rays. Hard X-rays (de®ned here as capable of

diffraction in typical crystals) of femtosecond duration are

currently produced by laser-driven plasma sources or by use

of special accelerator techniques, such as bunch slicing

(Schoenlein, Chattopadhyay, Chong, Glover, Heimann,

Leemans et al., 2000; Schoenlein, Chattopadhyay, Chong,

Glover, Heimann, Shank et al., 2000) or extreme bunch

compression in the Subpicosecond Pulse Source (SPPS)

(Krejcik et al., 2001) at the Stanford Linear Accelerator

(SLAC). Another type of accelerator-based source, the

Energy-Recovering Linear accelerator (ERL) is currently in

the advanced conceptual design phase (Bilderback et al., 2001,

2003).

The science with and the sources of subpicosecond hard

X-rays require the development of X-ray optics capable of

manipulating and measuring X-rays on the same time scales

(Adams, 2002). In principle, it is possible to change the

diffractive properties of a crystal within femtoseconds through

excitation with an intense laser pulse: optical phonons typi-

cally have oscillation periods around 100 fs and the delocali-

zation of the valence electrons (which are the majority in low-

Z material like diamond) can occur within a few femtoseconds.

This is discussed further in Appendix C. Furthermore, with the

intensities available from an XFEL, the X-rays themselves can

delocalize the electrons of the diffracting material within a few

femtoseconds (Neutze et al., 2000). Dynamical diffraction

under these conditions requires a theory that takes time

dependence explicitly into account.

The work on short-pulse dynamical diffraction can be

divided into two categories. The ®rst of these considers the

diffraction of a very short X-ray pulse in a perfect-crystal

lattice (Wark & He, 1994; Chukhovskii & FoÈ rster, 1995; Shastri

et al., 2001; Graeff, 2002). `Very short' in this context means

that the corresponding transform-limited spectral width is of

the order of, or larger than, the plane-wave energy bandpass

of the respective X-ray Bragg re¯ection. For X-rays at a

wavelength of 1 AÊ and an Si (111) re¯ection, the bandpass �E

is about 1.6 eV and the corresponding time 2�h- =�E is 2.6 fs.

The other category (Wark & Lee, 1999; Adams, 2002; Sond-

hauss & Wark, 2003) addresses the problem of X-ray

diffraction under the conditions of rapidly variable diffractive

properties of the crystal. New phenomena relative to static

cases must be expected when the crystal's diffractive proper-

ties change markedly within the X-ray/crystal interaction time

(see xx12, 13 and Appendix C).

The work presented here is a synthesis of the eikonal theory

with a time-dependent version of the Takagi±Taupin theory.

The principal goal of the theory is to describe X-ray diffraction



under the conditions of a strong subpicosecond (and down to a

few femtoseconds) change of the crystal diffractive properties.

With the eikonal comes the powerful visual language of

dispersion surfaces and whatever is left over by the ray±optical

eikonal approximation is taken up by the wave±optical

differential equations of the Takagi±Taupin theory. Numerical

calculations can be expected to be more precise than within

the standard Takagi±Taupin theory because the use of an

eikonal has the effect of minimizing the ®rst-order derivatives

of the ®eld amplitudes (which is bene®cial to numeric calcu-

lations) and at the same time implicitly reducing (although not

strictly minimizing) the second-order derivatives (which are

neglected altogether in Takagi's, though not in Taupin's,

formulation).

The theory is developed in a uni®ed space±time approach

and is based upon microscopic electromagnetism, using the

vector potential A and the electron density � instead of the

macroscopic electric ®eld D and the electric susceptibility �.

The latter are derived quantities and their meaning needs to

be revisited for cases where the crystal is subjected to a strong

and rapidly traveling disturbance (see discussion in Appen-

dices B and C). Instead of doing so, this text stays with

microscopic electromagnetism. A microscopic formulation of

the dynamical diffraction theory has been used before in the

description of magnetic scattering (Davis, 1995) and is also

applicable to nonlinear dynamical diffraction (Adams, 2003),

which appears in the context of parametric down conversion

of X-rays (Adams et al., 2000; Adams, 2003) and will also

become relevant with XFELs.

2. The wave equation

By use of the transverse gauge r �A � 0, Maxwell's equations

are equivalently expressed as r2� � ÿ4�� (henceforth of no

further concern), and a wave equation [Jackson, 1975, equa-

tion (6.52)]

r2Aÿ 1

c2

@2A

@t2
� ÿ 4�

c
Jt; �1�

where Jt is the transverse current [Jackson, 1975, equation

(6.50)],

Jt�r� �
1

4�
r � r �

Z
J

jrÿ r0j dr0: �2�

Although the current J is generated by the transverse ®elds, it

has a small longitudinal component, which is due to refractive

effects in the crystal. However, Jt is transverse by de®nition.

Furthermore, (2) permits a decomposition of the current into

individually transverse parts, according to the Bloch compo-

nent waves [see equation (10) below].

The current density is J � ÿe�v, where the electron velocity

v can be determined by use of the Lorentz equation

_v � �ÿe=m��E� �1=c�v� B�. The v� B term contributes only

in extreme cases (see Appendix D) and � gives rise to a small

longitudinal current. Both will be ignored here, but see the

discussion in Appendix D We have then E � ÿ _A and

_v � �e=mc� _A. Assuming that the electrons have zero velocity

in the absence of electromagnetic waves, the Lorentz equation

can be integrated directly to give v � �e=mc�A.

3. Disturbed lattice

For the following discussion, two types of disturbance will be

treated separately. The ®rst of these, henceforth called a lattice

distortion, can be desribed by a vector ®eld u�r; t�, which

represents a displacement of the lattice from r to r� u. The

other, henceforth called a parameter modulation, consists of a

change of the diffractive properties of the lattice in space and

time, without a change in the lattice itself. The two can appear

in combination with each other. Lattice distortions are typi-

cally due to static strain or sound waves, while parameter

modulations may be caused by optical phonons, polarons,

purely electronic excitations (an excitation across the band

structure being equivalent to a conversion from bonding to

antibonding orbitals).

A rigorous de®nition of a local reciprocal lattice can be

given by describing the distorted lattice as a manifold that is

parametrized by the corresponding coordinates of the undis-

torted lattice (Bishop & Goldberg, 1968). One can then de®ne

a local reciprocal lattice (Takagi, 1969) in a point r� u�r� of

the distorted crystal as a set of points within the tangent space

in point r of the undistorted lattice. For small u, one may

approximate the local reciprocal lattice in point r of the

distorted crystal through the tangent space in rÿ u. The

reciprocal-lattice vectors are the gradients of the lattice

phases, i.e. a local reciprocal-lattice vector h� in a point r of the

distorted crystal, corresponding to a reciprocal-lattice vector h

of the undistorted crystal, is given by [Authier, 2001, equation

(13.4a)]:

h� � rfh � �rÿ u�r��g � hÿru � h; �3�
and the electron density � of the crystal is

��r; t� �Ph ~�h�r; t� exp�ih � �rÿ u��: �4�
The electronic contribution to the charge density is then ÿe�,

which corresponds to the symbol � in the notation of Jackson

[1975, equation (6.72)].

A spatio-temporal disturbance of the electron density due

to optical phonons, excitons etc. can always be decomposed

into plane-wave-type elementary disturbances, which are

superposed upon the lattice-periodic undisturbed electron

density. It is thus convenient for the further development of

the theory to model ��r; t� as a sum of distorted (i.e. on the

background of a lattice distorted by a vector ®eld u) Bloch

waves.

��r; t� �P
m

P
h

~�m;h exp�ism� exp�ih � �rÿ u��;

sm � �km � �rÿ u� ÿ$mt�;
�5�

where km and $m are the base vector and the frequency of the

mth Bloch wave with kÿm � ÿkm and $ÿm � ÿ$m. The

reason for using a Bloch wave here, where, in the standard way

of describing phonons (Ashcroft & Mermin, 1976, Chapter

22), a plane-wave representation is suf®cient, is the need to
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describe a continuous, almost-periodic, electron density,

instead of only discrete atom positions.

The terms in (5) with index m � 0 represent the electron

density of a perfect undisturbed crystal, i.e. k0 � 0 and$0 � 0.

The phase sm is de®ned relative to the deformed lattice, i.e. it

contains km � �rÿ u�, instead of km � r because a modi®cation of

the electron density within the unit cells (i.e. an optical

phonon or a modi®cation in the band/bond structure) is

carried along with an overall lattice distortion u. This

rÿ u�r; t� dependence of sm is contained implicitly in the

dependence of ~�h�r; t� on r and t.

In practical cases, where one may use laser-generated

optical phonons etc. in the study of lattice dynamics, or for the

coherent subpicosecond manipulation of X-rays (Adams,

2002), usually only a few plane-wave disturbances or a plane-

wave-type wave packet of such disturbances will be excited.

The Fourier components ~�m;h can be naturally grouped into

sets of four, each containing indices �m and �h (except for

m � 0 and h). Several statements can be made about the

members of each set: (i) Any disturbance to the lattice is a

real-valued change of the real-valued electron density.

Therefore, ~�m;h and ~�ÿm;ÿh are complex conjugates of each

other. (ii) ~�m;h and ~�ÿm;h must have the same modulus, because

otherwise the reciprocal lattice would be changed: Take, for

example, the extreme case of ~�m;h 6� 0 and ~�ÿm;h � 0, i.e. only

two Fourier components, ~�m;h and ~�ÿm;ÿh, are present with

exponents �i��h� km� � �rÿ u� ÿ$mt�, and the lattice peri-

odicity is actually given by the reciprocal vector h� km. This is

however excluded by de®nition because lattice parameter

changes are to be described by u. (iii) If ~�m;h � ~�ÿm;h for a

given h and all m, then the disturbance does not introduce any

inversion asymmetry relative to h beyond what may already be

present in the crystal in the sense that the coordinate origin

can then be chosen to make ~�m;h real-valued for all m. If this

coordinate origin is independent of h, then the crystal is

inversion symmetric relative to it, and the disturbance does

not change that property. (iv) If ~�0;h � ~�0;ÿh for all m; h, then

the structure is inversion symmetric in the absence of the

disturbance, and that property is preserved under the distur-

bance only if ~�m;h � ~�ÿm;h and ~�m;h � ~�m;ÿh for all m; h.

For the vector potential, a pair of complex-conjugate

modulated Bloch waves A�r; t� � A����r; t� �A�ÿ��r; t� is

used, with

A����r; t� � PN
n�1

expfi�k0 � rÿ !t � 'n�r; t��g

�P
h

~A��;n�h �r; t� exp�ih � �rÿ u��: �6�

The phase factor expfi�k0 � rÿ !t � 'n�r; t��g applies to all of

the Bloch wave and the eikonal, i.e. the optical phase, along

k0 � r'n of the Bloch component wave �k0; ~A0�, is equal to

�k0 � r� 'n�=k, where k is the vacuum wavenumber. The

function 'n�r; t� will henceforth be called the eikonal function.

The index n is used to label sets of Bloch waves with different

eikonal functions 'n, which refer to the N branches of the

N-wave dispersion surface in the corresponding undisturbed

crystal. Solutions with different indices n will be considered

separately below, and the index n, as well as the superscript�,

will be suppressed in the notation, where possible, to reduce

the complexity of the formulas.

The Bloch component waves are de®ned to each ful®l the

transverse gauge condition, i.e.

r � ÿ ~Ah expfi�k0 � r� '� h � �rÿ u��g� � 0:

They are also de®ned to be transverse themselves at r � 0, i.e.

kh� � ~Ah � 0 with the abbreviation kh� � k0 � hÿru � h.

However, in the course of propagation, a wave may develop a

longitudinal component (see Appendix D), whereupon

r � ~Ah 6� 0 from the transverse gauge condition.

4. The differential equations

Equations (5) and (6) can now be combined to obtain the

current density J � ÿe�v. After application of the index

transformation h� h0 ! h and h0 ! h0, one obtains

J�r; t� � ÿrec
P

h;h0;m
~�m;hÿh0

~Ah0 exp�i�Sh � sm��; �7�

where re is the classical electron radius, and the abbreviation

Sh�r; t� � �k0 � r� '�r; t� ÿ !t� � h � �rÿ u� �8�
is used.

It is suf®cient to regard only the positive-directed waves and

currents ~A���h and J���, and the ��� will be suppressed

accordingly. Also, r and t will henceforth be omitted as argu-

ments to ~�, ~A���h0 , Sh�r; t� and sm�r; t�.
In order to express the integral in equation (2) for the

transverse current, we use Taylor expansions up to ®rst order

in r0, centered at r for h � u�r0; t�, '�r0; t� and ~A0h. Details are

given in Appendix A.

Jt � ÿrec
X

h;h0;m

~�m;hÿh0 � ~Am
h0 �h � i

�r ~A�m�h0 �h
k

( )
exp�i�Sh � sm��;

�9�
where

� ~Am
h0 �h �

Kh;m � ~Ah0 � Kh;m

jKh;mj2
; �10�

with Kh;m � kh� � km � r' and

�r ~A�m�h0 �h
k

h � ÿKh;m � �Kh;m � r ~Ah0 � � Kh;m

jKh;mj4

� 2
Kh;m � �r � ~Ah�
jKh;mj2

� Kh;m�r � ~Ah� ÿ r�Kh;m � ~Ah�
jKh;mj2

: �11�

Despite appearances, �r ~A�m�h0 �h is a tensor of ®rst rank. The

index m in the symbols on the left-hand sides of equations (10)

and (11) will henceforth be suppressed where possible to keep

the formula clutter in check.

In the ®nal step of the assembly, equations (5), (6) and (9)

are inserted into (1). Here, only the leading-order terms will



be kept, and the following will be neglected: (i) second-order

derivatives of ~A; (ii) products of ®rst-order derivatives of '
and u with ®rst-order derivatives of ~A; and (iii) products of

derivatives of ~A with the electron density, i.e. all of equation

(11). All these terms are taken up again in Appendix D. One

now obtains a system of differential equations:

2i
k

c
ÿ _'

c2
� _u � h

c2

� �
@ ~Ah

@t
ÿ 2i�kh� � r'� � r ~Ah

� kÿ _'

c
� _u � h

c

� �2

ÿ �kh� � r'�2
" #

~Ah

ÿ 4�re

X
m;h0

~�m;hÿh0 exp�ism�� ~Ah0 �h: �12�

For any given wavevector k0 and any given function '�r; t�, this

is a system of ®rst-order partial differential equations of

hyperbolic type. The function '�r; t� is not sought as a solution

of equation (12). It is an arbitrary function, available (details

below) to tune some of the properties of equation (12), which

is then solved for the ®eld amplitudes. Equation (12) may be

integrated by propagating along the space±time directions

given by f�k=cÿ _'=c2 � � _u � h�=c2�; kh� ÿ r'g.
Equation (12) looks very similar to its counterpart on the

basis of macroscopic electromagnetism [see Appendix B and

equation (16) in Sondhauss & Wark (2003)]. However, the

denominator in equation (10) contains kh� � km � r', where

the corresponding symbol � ~Dh0 �h of the macroscopic formula-

tion contains only k2. In most cases, km is very much smaller

than kh� : for example, a laser-induced optical phonon has a

wavenumber no larger than the reciprocal laser wavelength.

However, a steep disturbance contains large spatial frequen-

cies jkmj and then the difference between k and kh� � km � r'
does become important. As long as the disturbance contains

only one such spatial frequency, a modi®ed unit cell may be

de®ned, and macroscopic electromagnetism is applicable.

Nonetheless, in many cases one encounters a nonperiodic

disturbance such as a wavepacket, and then a rede®ned unit

cell cannot be used. Such a wavepacket disturbance, traveling

with a group velocity matched to that of the diffracting X-rays,

is particularly interesting in the context of the coherent

ultrafast manipulation of X-rays, which is the motivation of

this text.

5. Solutions in a perfect crystal

For an undisturbed perfect crystal, coordinates may be chosen

to make u vanish everywhere, and the sum over m; h0 in

equation (12) contains only the terms with m � 0. The eikonal

function ' may then be made constant in time and space,

whereupon the ®eld amplitudes are so, too. That leaves a

system of linear equations:

0 � �k2 ÿ k2
h� ~Ah ÿ 4�re

P
h0

~�0;hÿh0 � ~Ah0 �h; �13�

which is to be solved for the ®eld amplitudes. Nontrivial

solutions are obtained if the determinant det�k; k0� of coef®-

cients is zero. This condition de®nes a three-dimensional

surface in the four-dimensional space of wavenumbers and

wavevectors (i.e. photon energy and momentum). Fig. 1 shows

such a surface for the two-wave case (with only two appreci-

able amplitudes ~A0 and ~AH, coupled through the reciprocal-

lattice vector H), plotted in the three-dimensional space of

wavenumber versus wavevector components kx; ky. The gap

between the � and � branches (Batterman & Cole, 1964) is

exaggerated. Projected onto the k; kx plane, it is a photonic

band gap (although not omnidirectional like a true band gap)

and, projected onto the kx; ky plane, it is the gap between the

branches of the dispersion hyperbola.

A point on the dispersion surface represents the phase

velocities of the waves participating in the diffraction, i.e. the

wavevectors k0 and kH in Fig. 1 belong to diffractively

propagating waves with phase velocities !=jk0j and !=jkHj,
respectively. The group velocity of a diffracting mode is given

by rk!, which is reciprocal to the slope of the projection of
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Figure 1
The dispersion surface of the two-wave case in the three-dimensional
space of wavenumbers k and wavevector components kx; ky. The gradient
r det�k; k0� gives the propagation direction in space±time of a
wavepacket synthesized from the neighborhood of its origin. See text
for details.

Figure 2
Left: group velocity rk!, given by the slope of the line labeled vg, which is
perpendicular to the projection of r det�k; k0� onto the momentum-
energy coordinates. Right: Poynting vector S parallel to the projections of
r det�k; k0� onto the momentum coordinates. See text for details.
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r det�k; k0� onto a plane containing the energy-momentum

coordinates (Fig. 2, left-hand side).

That gradient is, of course, perpendicular to the surface

shown in Fig. 1. Projecting it onto the plane containing the

momentum coordinates yields a vector that is perpendicular

to the dispersion hyperbola, i.e. pointing along the Poynting

vector (von Laue, 1952; Kato, 1958). Putting these two aspects

together yields an interpretation of r det�k; k0� as being the

direction in space and time of a wavepacket that is synthesized

from modes close to its origin on the dispersion surface.

These observations demonstrate how useful dispersion

surfaces are and give the incentive for an introduction of this

concept into the Takagi±Taupin theory.

Before doing so, however, let us discuss a few points about

equation (12) within the simple context of a perfect crystal.

These are elementary here but will become important below in

the context of a disturbed crystal. If the Bloch base vector k0 is

made to lie on the dispersion surface, then ®eld amplitudes ~Ah

exist that solve the system (13) of linear equations. A point on

the dispersion surface that makes a set of ®eld amplitudes a

solution of equation (13) is called a tie point (Batterman &

Cole, 1964). Although a tie point need not exist for any

arbitrary set of ®eld amplitudes, a decomposition into sets of

amplitudes with tie points on several branches of the disper-

sion surface can always be found. This will no longer be

globally true in a disturbed crystal (see below). Suppose now

the Bloch base vector k0 has been chosen not to lie anywhere

on the dispersion surface or that a wrong frequency $ has

been inserted. Both of these mismatches can be corrected by a

judicial choice of '�r; t�, with a constant r' correcting for a

wavevector mismatch and a constant _' correcting for a

frequency mismatch. What if '�r; t� has been chosen incor-

rectly for that purpose, with k0 �r' originating from a wrong

tie point for a particular set of ®eld amplitudes, or not lying on

a dispersion surface at all, or if the ®eld amplitudes are no

solution for any tie point? This is shown in Fig. 3: the direc-

tional derivatives of the ®eld amplitudes on the left-hand side

of equation (12) now take up the mismatch, with the second-

order tensor ir ~Ah compensating for a mismatch in the tensor

�kh � r'� 
 ~Ah [where
 signi®es the tensor product (Bishop

& Goldberg, 1968, p. 76)] and with i�@=@t� ~Ah compensating for

�!� _'� ~Ah.

The eikonal function can thus be used to minimize the

directional derivatives of the ®eld amplitudes. This is trivial in

an undisturbed crystal and can be done in an optimization

procedure for a disturbed crystal (see below).

6. Disturbed crystal

As demonstrated above, the magnitude of the ®eld amplitude

derivatives in equation (12) depends on r' and _', and the

derivatives vanish if k0 � r' originates from a tie point for a

frequency !� _'. In a disturbed crystal, tie points cannot be

matched everywhere, and one must, instead, minimize the

derivatives and approximate the tie points. To that purpose, a

merit function is required, whose nature depends on the

emphasis (good match throughout the crystal, better match at

the surfaces etc.). A generic merit function isZ
dr
X

h

kh � r ~A���h ÿ
k

c

@ ~A���h

@t

 !
� ~A�ÿ�ÿh

�����
�����; �14�

which weights the derivatives according to the amplitudes

themselves and places no particular emphasis on any location

or time within the crystal.

The eikonal may now be varied to minimize the merit

function. In a numerical procedure, this might be done by

interpolating ' between a number of support points

fsn; n � 1; . . .;Ng in space and time and varying ' in the sn.

Equation (12) [or actually equation (15) below] is then solved

for each set of values of ' in fsn; n � 1; . . .;Ng, whereupon the

merit function can be evaluated.

The need to transport the ®eld amplitudes within a

disturbed crystal and the restriction of r' and _' being derived

from a scalar ' makes it impossible to match the tie points

exactly throughout the crystal: a set of ®eld amplitudes that is

a solution for a local dispersion surface somewhere in the

crystal can evolve into one that has no tie point at all. This

point will be taken up again in x11. The eikonal theory ignores

this transport issue and assumes that tie points (which are

permitted to slide along the dispersion surface) are matched

exactly everywhere in the crystal (Kato, 1973). Besides mini-

mizing the ®eld amplitude derivatives, which is of bene®t to

numerical calculations, the eikonal function used here at the

same time makes the dispersion surfaces available in an

optimal approximation. Other than in the pure eikonal theory,

any mismatch from a local tie point is taken up by the

derivatives of the ®eld amplitudes in the way of the original

Takagi±Taupin theory.

One is totally free to choose any Bloch base vector k0 and

wavenumber k in equation (12) because the minimization of

the merit function (14) will supply the proper eikonal function.

However, in the interest of keeping r' and _' small, k0 should

be chosen to originate from a point that would also be chosen

within the standard Takagi±Taupin theory, i.e. dispersion

hyperbola in Fig. 3, and k should be the refraction-corrected

vacuum wavenumber of the incident X-rays. Then, r' is

smaller than kh by a factor of 10ÿ5 or less and, even if the

crystal structure should change completely within a few

Figure 3
Equivalence of the tensor ir ~Ah to the tensor kh 
 ~Ah. The gradient may,
of course, also have a component perpendicular to kh.



femtoseconds (which de®nitely is within the scope of the

present theory), _' is smaller than k by a factor of 10ÿ4. The

term _u � h=c2 is even smaller than that. It is thus permissible to

approximate equation (12) as

2i
k

c

@ ~Ah

@t
ÿ 2ikh � r ~Ah

� kÿ _'

c

� �2

ÿ �kh �r'�2
" #

~Ah ÿ 4�re

X
m;h0

~�m;hÿh0 � ~Ah0 �h

� 2
k

c
_u � h� kh � ru � h

� �
~Ah

ÿ 4�re

X
m;h0
�exp�ism� ÿ 1� ~�m;hÿh0 � ~Ah0 �h: �15�

The second line of this equation is directly equivalent to

equation (13), and the third line contains all the perturbation

terms. If a tie point is matched locally, the second line vanishes,

and the perturbations in the third line are equated to the

derivatives of the ®eld amplitudes in the ®rst line. Most of

the following qualitative arguments will be based upon this

observation.

7. Example: static lattice distortion

To illustrate the role of the eikonal function, consider the case

of a static lattice deformation, given by a vector ®eld u. Take a

set of ®eld amplitudes for which a tie point exists locally at e.g.

a point on the surface through which the X-rays enter the

crystal. Such a set can always be found by splitting locally the

actual ®eld amplitudes among the branches of the local

dispersion surface. In the absence of ru, choose an eikonal

function '0 so that r'0 � k0 originates from that tie point [the

index 0 is not to be confused with the index n in the de®nition,

equation (6)]. Then `turn on' ru. Because ru � h are different

gradients for different reciprocal-lattice vectors h, no eikonal

function ' can be found, so that r' compensates for all of

them. Although ' cannot be made to fully counter the effect of

ru, it can be chosen to make the sum in the integrand of the

merit function (14) vanish locally: By multiplying each line in

equation (15) with the respective complex conjugate ®eld

amplitude and making use of the fact that k0 � r'0 originates

from a tie point, the following two equations are obtained

[superscript ��� dropped where possible]:

2ik0 � r ~A���h � ~A�ÿ�ÿh � j ~Ahj2kh � �r�'ÿ '0� ÿ ru � h�: �16�
Taking the sum over h and demanding that the left-hand side

[i.e. the integrand of equation (14)] vanish gives an equation

for r�'ÿ '0�:P
h

khj ~Ahj2
� �

� r�'ÿ '0� �
P

h

khj ~Ahj2 � ru � h; �17�

which means that r�'ÿ '0� interpolates among the gradients

r�u � h�. Locally, this interpolation can be expressed in terms

of a single gradient r�'ÿ '0� but globally this is not possible

because the ®eld amplitudes ~Ah are variable. Equation (17) is

discussed further in x10.

8. Comparison with the Takagi±Taupin theory

Other than in the present text, the original Takagi±Taupin

theory does not make use of dispersion surfaces and it was

derived for static or quasistatic disturbances of the crystal

lattice. More recently, the theory was extended to deal with

time-dependent lattice disturbances (Adams, 2002; Sondhauss

& Wark, 2003). To illustrate the difference between the

present theory and the standard Takagi±Taupin theory with

regard to a dispersion surface, one might write the dielectric

function of the disturbed crystal as " � 1� �p�r� � �d�r; t�,
where �p is the spatially periodic susceptibility of the undis-

turbed crystal and �d�r; t� is due to the disturbance (the

macroscopic concept of a dielectric function is only used here

to facilitate the comparison with the original Takagi±Taupin

theory).

The Takagi±Taupin theory works with ®eld amplitudes

Eh�r; t� in the form ET
h �r� exp�i�kh � rÿ !t��, with kh corre-

sponding to the `1' in " and the remainder ET of the spatial

dependence of Eh, corresponding to �p � �d in ", left to be

determined in a differential equation. In another approach

(Balibar, 1969; Authier & Balibar, 1970), the ®eld amplitudes

are written as EB
h;n�r� exp�i�kh;n � rÿ !t�� (although the index n

for the branch of the dispersion surface is omitted there),

where kh;n now originates from a tie point and a full descrip-

tion of the ®elds in the crystal requires as many kh;n as there

are branches of the dispersion surface. The differential

equations now must be solved for EB
n;h, which corresponds to

only �d in ", whereas the part corresponding to 1� �p need

not be solved for.

In the present theory, Eh are written as

EE
h;n�r� exp�i�kh � rÿ !t � 'n��, with the contribution to E, to

be determined through a differential equation, corresponding

to only part of �d. The terms due to `1', `�p' and part of `�d' are

removed from the solution. Fig. 4 illustrates the differences

between the standard Takagi±Taupin theory (STT), Balibar's

approach and the theory presented here (ETT).

9. Comparison with Kato's eikonal theory

Fermat's principle of extremal optical path length can be

applied to the diffraction of X-rays (Kato, 1963, 1964a,b).

Starting from a modulated Bloch wave (in the notation of this

text),

D�r; t� � exp�ikS0�
P

h

Dh exp�ih � r�; �18�

and using the properties of the perfect-crystal dispersion

surface, a variational principle and a differential equation to

describe the beam trajectories are derived. The variational

principle for a beam trajectory from A to B is obtained by use

of the convex/concave shapes of the branches of the dispersion

surface [Kato, 1963, equation (44)]:

�
RB
A

�k0 � dr� � 0; �19�

which leads to the Euler±Lagrange equation [Kato, 1963,

equation (45)]. Using the property of the dispersion surface
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that the Poynting vector is perpendicular to it, this is

converted to [Kato, 1963, equation (47)]

d

d`
k0;` �

@k0

@`
� n; �20�

where ` parametrizes the trajectory, k0;` is the component of

k0 along the trajectory and n is a normal vector to the

dispersion surface. Furthermore, making use of energy

conservation (and thus excluding interbranch scattering, see

x10), the beam trajectory is related to the energy ¯ow [Kato,

1963, equation (50)].

As stated in the de®nition of ', the eikonal in the present

theory is actually �k0 � r� '�=k and ' itself is called the

`eikonal function'. Strictly speaking, even �k0 � r� '�=k is not

an eikonal because it does not necessarily take up all of the

phase of the Bloch wave. In a strong disturbance, the phases of

the individual ®eld amplitudes do not evolve by the same

amount in the course of propagation and no single eikonal

could subsume them. It is exactly this admission of some

amount of individual phase evolution of the ®eld amplitudes

that makes the present theory applicable to strong distur-

bances. As a consequence of the departure from a strict

eikonal, the present theory cannot make use of the properties

of the dispersion surface in an exact sense. Instead, properties

of the solutions of the differential equation (15) after the

choice of an optimal eikonal function will be discussed in the

following sections, and it will be shown that they behave

approximately as one would expect from standard dynamical

diffraction theory.

10. Interbranch scattering

Before considering the individual ®eld amplitudes, let us look

at the evolution of a diffracting mode as an entity: If, for each

h, equation (15) is multiplied with ~A�ÿ�ÿh , the sum over h is

taken and only the lowest order of exp�ism� ÿ 1 is kept, then

the left-hand side reads

ÿ 2i
X

h

�kh � r ~A���h � � ~A�ÿ�ÿh � 2i
k

c

X
h

@ ~A���h

@t
~A�ÿ�ÿh

�
X

h

kÿ _'

c

� �2

ÿ �kh � r'�2
" #

j ~Ahj2

ÿ 4�re

X
m;h0

h

~�m;hÿh0 � ~Ah0 �h ~A�ÿ�ÿh

� 2
X

h

k

c
_u� kh � ru

� �
� hj ~Ahj2

ÿ 4i�re

X
m;h0

h

sm ~�m;hÿh0 � ~Ah0 �h ~A�ÿ�ÿh : �21�

The left-hand side (®rst line) is just the integrand of the merit

function (14). It is also the continuity equation of the

electromagnetic energy density and ¯ow:

ÿi
4�

kc
r � S� i

4�

kc

@U
@t
� (r.h.s.);

S � kc

4�

X
h

khj ~Ahj2

U � k2

4�

X
h

j ~Ahj2;
�22�

where S is the Poynting vector [Jackson, 1975, equation

(6.109)] and U is the energy density [Jackson, 1975, equation

(6.106)] of the electromagnetic waves represented by the ®eld

amplitudes ~Ah. The abbreviation (r.h.s.) means the right-hand

side of equation (21), which contains contributions from the

disturbance terms in the third line of equation (21) and also

from a possible mismatch of k0 � r' from the tie point for the

amplitudes ~Ah (supposing the amplitudes permit a tie point at

all, see above).

A nonvanishing divergence means that S changes its length,

which may be due to absorption or also due to the so-called

interbranch scattering (Balibar et al., 1983; Kulda, 1984), i.e. a

reassignment of photons among the modes of dynamical

diffraction (branches of the dispersion surface). It should be

emphasized here that these modes and the scattering between

them are not anything intrinsic to the nature of the problem,

because (r.h.s) in equation (22) depends on the choice of '.

There is, however, a minimal scattering rate between the

branches, which is obtained by minimizing the merit function

(14).

If the eikonal function ' makes k0 �r' originate from a

local tie point, then the second line in equation (21) vanishes,

and the disturbances in the third line of equation (21) are

directly the driving terms of the continuity equation for S. A

change in S that does not contribute to r � S changes the

direction of S and, correspondingly, the location of the tie

point on the dispersion surface. This is the regime of the

Figure 4
De®nitions of the wavevectors in the two-wave case. Upper left: in the
perfect-crystal theory, the wavevectors originate from a tie point. Upper
right: in the theory presented here, there is no well de®ned tie point, but
modes can be de®ned, each of which has a tie region (indicated by the
ellipse), which is given by the wavevector kh � r'n, with 'n determined
through equation (14). The wavevectors are variable through r'n. Lower
right: in the standard Takagi±Taupin theory (STT), the wavevectors are
®xed and usually originate from the symmetry point of the dispersion
hyperbola. Lower left: in Balibar's approach, the wavevectors originate
from a ®xed tie point of the locally approximated dispersion surface. This
tie point is generally close to the tie region of the ETT.



original eikonal theory. If, however, the ®eld amplitudes

change in a way that does not admit a tie point, then r � S 6� 0

and interbranch scattering occurs.

In the simple case of an undisturbed crystal, it is possible to

relate r � S directly to a mismatch from a tie point T. Suppose

that k0 �r'0 originates from T but k0 � r' does not.

Neglecting _'2 and �r'�2, equation (21) can be written as

i
@U
@t
ÿ ir � S � 2� _'ÿ _'0�U ÿ 2S � r�'ÿ '0�: �23�

In the presence of a disturbance, there are additional driving

terms to the derivatives of U and S from the third line of

equation (21).

Consider now a disturbed crystal and assume that the ®eld

amplitudes at a given point r; t admit a tie point T and

k0 � r'0 originates from it. Equation (21) then reads:

i
@U
@t
ÿ ir � S � k2

4�

X
h

_u� c

k
kh � ru

h i
� hj ~Ahj2

ÿ ikcre

X
m;h0

h

sm ~�m;hÿh0 � ~Ah0 �h ~A�ÿ�ÿh : �24�

The lattice disturbance is thus the cause of a sink or source to

the continuity equation of the electromagnetic energy ¯ow for

a particular branch of the dispersion surface and, in the

absence of absorption, this must be attributed to interbranch

scattering.

Please note the different but complementary ways of

reasoning here and for equation (17). Here, the eikonal

function '0 that matches the tie point for the amplitudes is

kept and the effect of a disturbance on the ®eld amplitudes is

studied. For equation (17), another eikonal function ' was

chosen to make the sum of the derivatives vanish and equation

(17) then gives the projection of r�'ÿ '0� onto S. Equation

(17), supplemented with the time-dependent and the ~�m;h

terms, is:

U� _'ÿ _'0� � S � r�'ÿ '0�

� k2

4�

X
h

j ~Ahj2 _u � h� kc

4�

X
h

khj ~Ahj2 � ru � h

ÿ i
kc

2
re

X
m;h0

h

sm ~�m;hÿh0 � ~Ah0 �h ~A�ÿ�ÿh : �25�

11. Static distortion, guided waves, beam stability

For a static deformation, equation (15) is reduced to

kh � r ~Ah �
i

2
�k2 ÿ �kh � r'�2� ~Ah ÿ 2�ire

X
h0

~�0;hÿh0 � ~Ah0 �h

� ikh � ru � h ~Ah; �26�
where h and h0 may take the values 0 and H.

We now consider the stability of a mode by following the

evolution of the ®eld amplitudes in the course of propagation.

The stages of the amplitude evolution in the following

discussion are given letters (a), (b), (c), . . ., which correspond

to the phasors in Fig. 5.

Without loss of generality, assume that the phase of ~A0 at

some point r equals zero and ~AH � ÿ ~A0 [(a) in Fig. 5], with

the wavevector k0 �r' perfectly matching the tie point on

the � branch of the dispersion surface. Then, the right-hand

side in the ®rst line of equation (26) vanishes and, with the

lattice distortion shown in Fig. 5, the perturbation term

kH � ru �H is negative, while k0 � ru � 0 is, of course, zero. At a

point r within the crystal, the amplitudes are therefore as

shown in (b) in Fig. 5: no change in ~A0 and ~AH has picked up a

negative phase �.

This negative phase of ~AH makes the sum in the line for

h � 0 in equation (26) equal to a real number times a factor

exp�i��ÿ ��� � ÿ1� i� (with � for the � branch). With the

factor ÿi before the sum and ~�H > 0 (electron density, not

charge density), the directional derivative of ~A0 on the left-

hand side acquires a positive real part. Therefore, in the

course of propagation, the modulus of ~A0 grows and, with a

similar argument, the modulus of ~AH shrinks [(c) in Fig. 5].

Again, in the line of equation (26) for h � 0, the modulus of

the sum is now smaller. The sum is negative owing to the factor

exp�i�� between the ®eld amplitudes on the � branch.

Therefore, owing to the factor ÿi before the sum, the right-

hand side acquires a negative imaginary part [(d) in Fig. 5].

Likewise, the right-hand side of equation (26) for h � H

± after multiplying both sides with the phase factor exp�ÿi��
to cancel the phase exp�i�� of ~AH ± acquires a positive

imaginary part (d). This tends to counter the negative phase �
that ~AH started out with. In conclusion, a mode on the �
branch is stable with respect to small perturbations and the

maxima of the standing waves tend to stay between the lattice

planes. This is to be expected because a mode on the � branch

has longer wavevectors than one on the � branch and there-

fore tends to be guided by a refractive index pro®le (just like

light in a glass ®ber). Similarly, the evolution of the amplitudes

Acta Cryst. (2004). A60, 120±133 Bernhard W. Adams � Time-dependent Takagi±Taupin eikonal theory 127

research papers

Figure 5
Amplitude evolution, guided waves on the � branch in a distorted crystal.
The little phasors for ~A0 and ~AH have letters (a), (b), (c), . . ., which
denote stages in the amplitude evolution explained in the text.
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can be followed through for the � branch, with the result of a �
mode being unstable towards small perturbations.

There is of course a limit to the stability of a mode on the �
branch. If the disturbance is so strong that the diffractive

properties change signi®cantly over the PendelloÈsung length,

then guidance of the standing waves breaks down. A quanti-

tative criterion is obtained from equation (26). For stability,

kh � ru � h ~Ah � re

P
h0

~�hÿh0 � ~Ah0 �h �27�

must be valid. This expression depends on the magnitude of u

versus � and on the amplitude ratios.

The above discussion was about the phases of the ®eld

amplitudes and the positions of the standing waves relative to

the lattice planes. What about the direction of energy ¯ow, i.e.

the beams? According to the above discussion for the �
branch, the modulus of ~A0 grows at the expense of that of ~AH,

as the radiation propagates in a crystal with a curvature as

shown in Fig. 5. Therefore, the tie point slides down on the

dispersion surface and the beam direction bends downward,

i.e. with the same tendency as the curvature of the lattice

planes. This result was also obtained before (Penning &

Polder, 1961) on the basis of geometrical optics [see Fig. 4 of

Penning & Polder (1961) and also Fig. 13.10 of Authier (2001)]

and has been shown computationally on the basis of the

Takagi±Taupin theory (Balibar et al., 1975).

If the crystal deformation is small by the criterion of

equation (27), a mode on the � branch will stay there and will

only slide along the dispersion surface. This is the regime

where the eikonal approximation is applicable. For a stronger

deformation or for a mode on the � branch, interbranch

scattering occurs and the pure eikonal theory is no longer

applicable. However, the eikonal Takagi±Taupin theory

presented here can still be used because the differential

equations can `mop up any spills' of the eikonal.

12. Optical phonons, frequency shifts

In this example, a spatially perfect crystal is subjected to a

sudden perturbation that induces a rapid change in the elec-

tron density but no lattice distortion, i.e. ru � 0. An example

would be a laser-pulse-induced strongly excited optical

phonon. A diffracting mode will have an eikonal function '0�r�
that matches the appropriate tie point perfectly in the absence

of the disturbance. Because the unperturbed crystal is static,

'0 is independent of time. This makes

�k2 ÿ �kh � r'0�2� ~Ah ÿ 4�re

P
m;h0

~�m;hÿh0 � ~Ah0 �h

[the second line of equation (15)] vanish. No terms with u are

present by de®nition of the problem. Suppose ®rst that the

eikonal function is not adapted to the disturbance, i.e. ' � '0

is kept. Equation (15) is then reduced to

2i
k

c

@

@t
ÿ kh � r

� �
~Ah � ÿ4�re

X
m;h0

~�m;hÿh0 �exp�ism� ÿ 1�� ~Ah0 �h;

�28�

directly relating the ®eld-amplitude derivatives to the

perturbation terms. The characteristics of this differential

equation are the 4-vectors [but written in (1+3) notation],

�ÿ�k=c�; kh� and, for given boundary conditions, the solutions

are fully determined. When dealing separately with temporal

and spatial coordinates, as in equation (28), the question may

however arise in which way the value of the right-hand side

will be distributed among the spatial and the temporal

derivatives on the left-hand side. The following discussion will

aid in answering that question: Each term ~�m;hÿh0 �exp�ism� ÿ 1�
in the sum gives a contribution to the change in a given point

�t; r� of the phase of ~Ah, expressed by the directional deriva-

tive along �ÿ�k=c�; kh�. The contribution from the term

~�m;hÿh0 exp�ism� would vanish in a reference frame that is

moving along the world line of sm, i.e. moving along km with

the phase velocity vp � $=jkj of that particular Fourier

component of the disturbance (a virtual velocity, which may

well be superluminal in the case of an optical phonon at the

Brillouin zone center). Since we are staying, instead, in the

point �t; r�, the phase of the disturbance evolves there. The

contribution of ~�m;hÿh0 exp�ism� is thus split among the partial

derivatives according to the ratio

k

c

@ ~A���h

@t
� ~A�ÿ�ÿh

 !
: ��kh � r ~A���h � � ~A�ÿ�ÿh �

� �$�� : k � kh

jkhj
c�

� �
; �29�

where kh=jkhj is a unit vector along kh and c� is the distance

covered in that direction at the speed of light (of the X-rays)

within a time �. Both parts of the ratio on the left-hand side in

equation (29) were multiplied with the same vector ~A�ÿ�ÿh to

yield scalars.

In particular, if the disturbance has high frequencies $ at

low wavenumbers jkj, then the time derivative of ~Ah is

dominant and a frequency shift may result (heterodyne

mixing) ± if it is not cancelled by another Fourier component

of the disturbance, see below. To further discuss the in¯uence

of a disturbance on the ®eld amplitudes, the origin of the

Fourier series of the disturbance will be moved to the point

�t; r� under consideration. This is, of course, something one

should not do when actually calculating a solution of the

propagation problem but it is valid in a discussion of local

behavior. With the new origin, the dipole approximation can

be applied and exp�ism� ÿ 1 be replaced with ism in a small

region about �t; r�. By de®nition [see equation (5)] therefore,

the sum i
P

m;h0 ~�m;hÿh0sm is real valued. It follows that only the

imaginary part of ~�m;hÿh0 actually contributes to the derivatives

of ~Ah, whereas the real parts of ~��m;��hÿh0� cancel each other

out. Therefore, a contribution to the derivatives of the ®eld

amplitudes comes only from the inversion antisymmetric part

[relative to the origin �t; r�] of a disturbance, which may be due

to a slope in space or time of the envelope of the disturbance

or to the disturbance itself being of noncentrosymmetric

character, such as an optical phonon in a noncentrosymmetric

crystal (GaAs for example).



Instead of considering only the contribution of a single

mode of the disturbance with a particular frequency $ and

wavevector k, one might also consider wavepackets of optical

phonons. If the group velocity of such a wavepacket matches

the group velocity of the diffracting X-rays, then the action of

the disturbance on the X-rays will be enhanced (Entin, 1978).

One may interpret a frequency shift under these conditions as

a constructive superposition of Doppler shifts upon re¯ection

from vibrating lattice planes in phase with the X-rays boun-

cing back and forth in a PendelloÈsung oscillation. This boun-

cing motion is, of course, a continuous scattering process from

lattice planes moving synchronously with the PendelloÈsung

oscillation. According to equation (28), the magnitude of this

shift may be estimated as the optical phonon energy trans-

ferred to the X-rays within a multiple M of PendelloÈsung

periods given by the ratio of vibration amplitude versus lattice

parameter. If this ratio is 0.1 (about the maximum permitted

by the Lindeman criterion of lattice stability), then an optical

phonon energy of typically 10 to 100 meV is taken up by the

X-rays within 10 PendelloÈsung periods.

One ®nal point: the eikonal function was kept unchanged

from '0 in the above discussion. If ' is now adapted to mini-

mize the derivatives in the presence of the disturbance, then

the derivatives of ~Ah become smaller and the phase shifts

(frequency shifts and wavevector changes) represented by

them are taken up by _' and r�'ÿ '0�. Nothing (except

perhaps a higher accuracy of the solution) changes in the

actual behavior of the waves (frequency shifts etc.) by doing

so.

13. From boundary to transition conditions

In analogy to the boundary conditions for the coupling of

waves across a crystal boundary, the transport of waves

within a disturbed crystal is also subject to the requirement

of continuity. This continuity is expressed in terms of

gradients instead of the vectorial algebraic relations at a

discontinuous boundary. Generally, these gradients are

taken in space±time, as illustrated in Fig. 6. For the

purposes of the local behavior of a solution of equation

(15), such as in the transition of a disturbed layer, one may

look at one of two complementary aspects of the modu-

lated Bloch wave. (i) When the eikonal function is left

unchanged, then all the effects of the disturbance are taken

up by the ®eld amplitudes. This is demonstrated in x10 in

the discussion of interbranch scattering. This approach is

analogous to the splitting of amplitudes among the bran-

ches of the dispersion surface in the transition of a

discontinuous interface between a perfect crystal and an

amorphous medium (or beteen two perfect crystals).

Instead, (ii) one may also leave the ®eld amplitudes

unchanged and study the changes in the eikonal function as

an interface is traversed. This is the approach that was

taken in the derivation of equation (17). In doing so, one

focuses the attention on the changes in the wavevectors,

similar to wavevector matching across perfect crystal

boundaries. As stated towards the end of x10, a global

minimization of the merit function will yield a result

somewhere between these two extremes, trading a change

in amplitudes at a particular location (and thus incurring a

penalty in the merit function) for a better ®t somewhere

else.

Fig. 6 shows the dispersion surface of a two-wave case

before and after the passage of a disturbance, which reduces

the structure factor relevant to the diffraction. The expres-

sions `before' and `after' are used here in the sense of a time-

like separation. The dispersion surface of the undisturbed

crystal [indicated by
2 ] has a larger gap between its branches

than the one in effect after
1 the disturbance has passed.

Before the disturbance, a mode was excited on the �
branch, indicated by the ellipse 
2 . The disturbance leads to

interbranch scattering, and the amplitudes are reassigned

among the new (closer spaced) � and � branches along the

space±time gradient of the disturbance, which is indicated by

the straight line connecting the ellipses for the original mode


2 and the new modes. Because the space-time gradient of the

disturbance has a component along the vertical axis of the

®gure, which corresponds to the photon energy, a frequency

shift of the diffracting X-rays occurs. As pointed out above,

this requires a change in the crystal structure of a noncen-

trosymmetric character. That does, however, not mean that

the crystal structure long before and long after the disturbance

needs to differ in its degree of centrosymmetry: the space±

time envelope of the structure change itself provides a

noncentrosymmetry. This is quite different from a situation

where coherent optical phonons are present in a stationary

manner. To obtain a frequency shift in such a case, the optical

phonons themselves must change the degree of centrosym-

metry.
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Figure 6
Dispersion surfaces before (wider spaced pair) and after (closer spaced
pair) the passage of a disturbance that reduces the structure factor
associated with a particular reciprocal-lattice vector H. The perspective is
about the same as in Fig. 1. Also shown is the space±time gradient of the
disturbance and the redistribution of waves among the branches of the
dispersion surface. See text.
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14. Conclusions

The next generation of X-ray sources, particularly the XFELs,

will provide exciting new opportunities in the study of ultra-

fast processes. A theoretical basis needs to be developed

to fully exploit these opportunities, to understand X-ray

diffraction in laser pump, X-ray probe experiments, to develop

ultrafast X-ray instrumentation and to describe the diffraction

of intense femtosecond X-ray beams that modify the crystal as

they propagate. The theory presented here was developed

with these goals in mind. It is formulated in a uni®ed space±

time picture to make it applicable to time scales of the order

of the X-ray/lattice interaction time. Dynamical diffraction

theory is usually based upon macroscopic electromagnetism,

using the quantities � and D, which are derived from micro-

scopic electromagnetism in a spatial averaging procedure. In

cases where the spatial frequencies of a disturbance are not

negligible relative to the X-ray wavenumber, the assumption

of the availability of a suf®ently large averaging volume

becomes invalid. If the disturbance contains only a single

spatial frequency, this problem can be addressed through a

suitably modi®ed crystal unit cell. However, nonperiodic

(wave-packet type etc.) disturbances cannot be dealt with in

this way. The same holds true for disturbances, whose char-

acteristic times correspond to such spatial frequencies at the

speed of light, and particularly for applications in the

diffractive femtosecond manipulation of X-rays with laser-

induced disturbances traveling through a crystal at nearly the

speed of light. For this reason, the theory is presented here on

the basis of microscopic electromagnetism.

APPENDIX A
The transverse current

To compute the transverse current, equation (2), from equa-

tion (7), the spatial dependences of ~Ah, Sn;h (through ' and u)

and sm (through u) can be expressed in Taylor expansions:

h � u�r0; t� � h � u�r; t� � �r0 ÿ r� � rujr � h� . . . �30�
'�r0; t� � '�r; t� � �r0 ÿ r� � r'jr � . . . �31�

~Ah0 �r0; t� � ~Ah0 �r; t� � �r0 ÿ r� � r ~Ah0 jr � . . .; �32�
which yield (using the variable substitution r0 ÿ r � r00):

Jt�r; t� � ÿ rec

4�

X
mn
hh0

~�m;hÿh0 exp�ÿi�!�$m�t�

� r � r �
 

expfi�r � �kh � km� � 'n ÿ h � u�g

�
Z

dr00
~Ah0 �r� � r00 � r ~Ah0

��
r

jr00j

� expfi�r00 � �kh� � km � r'n��g
!

�33�

Integration of the ®rst term, ~Ah0 �r�, in the sum can be done by

aligning the z axis of cylindrical �'; r; z� coordinates along

Kh;m � kh� � km � r' (abbreviated further as K where

possible) and using equation (3.754.2) of Gradshtein & Ryzhik

(1981) for the z integration, followed by equation (6.561.16) of

Gradshtein & Ryzhik (1981) for the r integration. The result is

j4� ~Ah0 �r�=kh;mj2.

Some more effort is required for the r00 � r ~Ah0 term. First,

r ~Ah0 is split into a longitudinal gradient part k�K � r ~Ah0 �=jKj2
and a transverse remainder. The integral over the latter

vanishes owing to symmetry in the �'; r� integration in the

above cylindrical coordinates. For the former, an exponential

damping factor exp�ÿ�jzj� is introduced with the limit

�! 0 taken below. This makes the integral over

r00 � r ~Ah0
��

r
exp�iK � r00�=jr00j:

2�
�K � r ~Ah0 �
jKj

Z 1
0

r dr

�Z 0

ÿ1

z exp��ijKj � ��z�
�r2 � z2�1=2

dz

�
Z 1

0

z exp��ijKj ÿ ��z�
�r2 � z2�1=2

dz

�
: �34�

The ®rst (ÿ1 to 0) of these two integrals is the negative

complex conjugate of the other. With equation (3.366.3) of

Gradshtein & Ryzhik (1981), the integral (34) becomes:

i�2 �K � r ~Ah0 �
jKj

Z 1
0

r2 dr=fH1���ÿ ijKj�r� ÿ Y1���ÿ ijKj�r�g;
�35�

where = denotes the imaginary part and H1 and Y1 are Struve

and Bessel functions, respectively. The r integral converges

only in the limit �! 0 (shown below), and is thus not to be

found in a reference table of integrals (Gradshtein & Ryzhik,

1981). However, convergence can be determined through an

asymptotic expansion of H1�z� ÿ Y1�z� for large z [Abramo-

witz & Stegun, 1984, equation (12.1.31)]:

H1�z� ÿ Y1�z� �
2

�
1� 1

z2
ÿ 12 � 3

z4
� 12 � 33 � 5

z6
ÿ . . .

� �
:

�36�

The ®rst term, 1, in the series does not contribute to the

imaginary part and the terms with zÿ4; z � ��ÿ ijKj�r and

beyond (multiplied by r2 in the integral) are all integrable.

That leaves only the zÿ2 term, which is real valued for purely

imaginary z. Therefore, the integral (35) converges in the limit

�! 0 andZ
dr00

r00 � r ~Ah0
��

r

jr00j exp�ir00 � Kh;m� � i
�2�Kh;m � r ~Ah0 �
jKh;mj4

� 1:273;

�37�

where the number 1:273 � 4=� comes from a numeric

integration of r2=�H1�ir� ÿ Y1�ir�� over the interval

�0; . . .; 20�.



We have thus

Jt�r; t� � ÿrec
X
mn
hh0

~�m;hÿh0

� r � r �
�

~Ah0

jKh;mj2
� i
�Kh;m � r ~Ah0 �
jKh;mj4

 !

� exp�i�Sn;h � sm��
�
: �38�

Application of the r � r� operator to the ~Ah0 term leads to

r � r � ~Ah � 2iK � �r � ~Ah� � ir � �K � ~Ah� � K � ~Ah � K

(with the indices h;m; n of K suppressed). The term

r � �K � ~Ah0 � can be converted to K�r � ~Ah0 � ÿ r�K � ~Ah0 �
using the vector formulas

r � �a� b� � a� �r � b� ÿ b� �r � a� � �b�r� � aÿ �a� r� � b

and

r�a � b� � a�r � b� � b�r � a� � �a�r� � b� �b� r� � a;

which can be found on the web (PicheÂ, 2003) or can be derived

from the formulas on the inside cover of Jackson (1975) by use

of a� �r � b� ÿ �a�r� � b � a�r � b� ÿ �a � r�b. This gives

the last of the three terms in equation (11). In a purely

transverse wave, both r � ~Ah0 and K � ~Ah0 vanish. However, as

pointed out in Appendix D, the individual Bloch waves may

develop longitudinal components as they propagate into a

distorted lattice. After neglecting the second-order derivative

of ~Ah, the transverse current is

Jt � ÿrec
X
mn
hh0

~�m;hÿh0 � ~A�m�h0 �h � i
�r ~A�m�h0 �h

k

 !
exp�i�Sn;h � sm��;

�39�
where the de®nitions of sm and Sn;h are given in equations (8)

and (5), respectively, and � ~Am
h0 �h and �r ~A�m�h0 �h are de®ned in

equations (10) and (11).

To identify the contribution of Kh;m � r ~Ah0 to Jt, one may

de®ne a longitudinal part r ~Akh0 � �r ~Ah0 � Kh;m��Kh;m�=jKh;mj2
of the vector potential and split r ~Ah0 � r ~A?h0 � r ~Akh0 .
Application of the operator r � r� to

Kh;m � r ~Akh0 exp�i�Sn;h � sm��, and keeping only ®rst-order

derivatives of ~Ah0, yields zero, and r ~A?h0 may be split again into

a longitudinal gradient part Kh;m�Kh;m � r ~A?h0 �=jKh;mj2 and a

transverse remainder. As above, before equation (34), the

latter vanishes owing to symmetry in the �'; r� integration. In

summary, the contribution to the transverse current comes

from the longitudinal gradient part of the transverse part of

the vector potential. Its magnitude is given by the directional

derivative of ~Ah in equation (12), and thus depends on the

diffraction process in the crystal. In contrast, the transverse

gradient part of the vector potential is given by the boundary

conditions, and may be much larger than the longitudinal

gradient part. It does, however, not contribute to the trans-

verse current.

APPENDIX B
Microscopic or macroscopic electromagnetism

The dynamical theory of X-ray diffraction is usually derived in

terms of macroscopic electromagnetism, such as the electric

susceptibility � and polarization P. The wave equation then

reads

r2Dÿ 1

c2

@2D

@t2
� 4�r � r � ��D� � 0; �40�

with D � E� 4�P.

In analogy to equations (5) and (6), � is now represented by

a sum of Bloch waves [replace ~�m;h in equation (5) with ~�m;h]

and D as a modulated Bloch wave [replace ~Ah�r; t� in equation

(6) with ~Dh�h; t�].
These Bloch waves may now be inserted into equation (40).

Keeping only the leading-order terms, as in the derivation of

equation (12), gives:

2i
k

c
ÿ _'

c2
� _u � h

c2

� �
@ ~Dh

@t
ÿ 2i�kh� � r'� � r ~Dh

� kÿ _'

c
� _u � h

c

� �2

ÿ �kh� � r'�2
" #

~Dh

� 4�k2
X
m;h0

�m;hÿh0 exp�ism�� ~Dh0 �h; �41�

where

� ~Dh0 �h �
�kh� � km � r'� � ~Dh0 � �kh� � km �r'�

k2
�42�

is de®ned to correspond to � ~Ah0 �h in equation (10). There is,

however, one important difference between the two: where

equation (10) has a denominator jkh� � km � r'j2, equation

(42) has only k2. Because the denominator involves the Bloch

component wavevectors kh�, it is not possible to deal with this

problem by simply de®ning a modi®ed susceptibility. The

difference between the denominators becomes relevant when

jkmj is not negligible in comparison to jkh� j, such as, for

example, in short-period superstructures or laser-induced

optical phonons. Laser wavelengths typically being longer

than those of X-rays by a factor of ca 104, the optical phonons

excited in a linear-response material have wavevectors

jkmj< 10ÿ4jkh� j. However, considerably larger phonon wave-

numbers may be obtained with a crystal that exhibits a

nonlinear response to a driving laser ®eld, for example close to

a ferroelectric phase transition. This may be a rather rare case,

but a potentially very important one for practical applications.

The underlying reason for the difference between the

denominators of equations (10) and (42) is that the concept of

an electric susceptibility is a macroscopic one, derived from

microscopic electromagnetism in a spatial averaging proce-

dure (Jackson, 1975) or, in the case of a periodic electron

density, through a Fourier integration. When the spatial

frequencies km of a disturbance are not negligible relative to

the X-ray wavenumber k, i.e. when the disturbance is notice-

able within the averaging volume, then a microscopic deriva-

tion yields a result that is at variance with the macroscopic
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one, and the former must be given precedence. When looking

at this point from a formal point of view, the wavevectors km of

the disturbances appear in the exponent in the integrand of

equation (33). Because they do so in a vector sum with

kh� � r', the integral depends on kh� . In contrast, a spatial

averaging procedure to de®ne a susceptibility would not

exhibit this dependence on kh� � r'.

APPENDIX C
Elementary interaction length and time

The most fundamental interaction length is the classical

electron radius re in the case of Thomson scattering and the

atom diameter in the case of resonant X-ray scattering.

Likewise, the intrinsic interaction time �0 of Thomson scat-

tering is the reciprocal electron rest energy (i.e.

�0 � 2�h- =511 keV) and the fundamental interaction time of

resonant scattering is the smaller of the reciprocal energy

offset from exact resonance and the lifetime of the inter-

mediate excited state. However, each individual scattering

event from an electron or an atom contributes only a small

amplitude. In a perfect crystal, these amplitudes add up

coherently until, after passage of a large number of atoms

(typically 105 or more), the scattered amplitudes are equal in

magnitude to the original wave(s) and thus have a sizeable

in¯uence. The interaction of the X-rays with a perfect crystal

therefore occurs over a characteristic length of many (� 105 or

more) interatomic distances. A good measure of the interac-

tion length is one-half of the PendelloÈsung length of the Laue

case (Batterman & Cole, 1964; Authier, 2001), which is the

length required for complete amplitude swapping among the

diffracting waves. Likewise, the lattice interaction time is the

time it takes for the many distributed microscopic scattering

events to build up a strong scattered amplitude, i.e. the time

the X-rays take to traverse the lattice interaction length. With

a strong structure factor, such as Si (111), and photons of

12.4 keV, the PendelloÈsung length is about 30 mm, and the time

corresponding to one-half of that is about 50 fs. With weaker

structure factors, the interaction lengths and times are corre-

spondingly longer. In comparison, optical phonon oscillation

periods are typically of the order of 100 to 200 fs. There is,

however, a way to change a crystal's diffractive power even

faster than that, using a massive electronic excitation from the

valence band of a semiconductor to its conduction band. In

the complementary picture of bonds (Phillips, 1973), this is

equivalent to a conversion from bonding to antibonding

orbitals. In diamond, four out of six electrons are in the

valence structure and thus directly accessible to laser excita-

tion, and the diffractive power can thus be made to change

drastically within a few femtoseconds.

In a perfect crystal, the dispersion surface (Batterman &

Cole, 1964; Authier, 2001) has well de®ned branches, which

may be considered separately in the description of diffractive

X-ray propagation. The PendelloÈsung phenomenon is due to a

beating of modes originating from the branches, and each

mode in itself does not exhibit any characteristic interaction

length or time. In fact, X-rays in a mode on the dispersion

surface do not interact with the lattice at all because the

scattering from the electrons is built into the de®nition of the

mode. When considering X-rays in terms of other modes of

the electromagnetic ®eld, for example by using wavevectors

originating from the symmetry center of the dispersion

hyperbola (see Fig. 4, lower right-hand graph), then these

X-rays do scatter from the lattice. The interaction of X-rays

with a lattice is thus a matter of the point of view taken.

The wavevectors of modes on different branches of the

dispersion surface have extremal (maximal and minimal)

lengths under given boundary conditions,1 and differences

between them become apparent in the form of a 2� phase shift

upon traversal of the PendelloÈsung period. A deviation from

perfect-crystal-like diffraction will thus occur when a distur-

bance has the effect of inducing a noticeable change (most of

all in the phases) in the Bloch-wave amplitudes ~Ah within the

PendelloÈsung length, or the corresponding time. This can

generally be expected to occur if the diffractive properties of

the crystal change over these length and time scales. It is then

not possible to de®ne a dispersion surface in the strict sense

(only approximate it, which is what most of this text is about),

and the X-rays in any applicable mode of the electromagnetic

®eld do interact with the lattice throughout their propagation.

When the crystal's diffractive power changes only slightly

within the lattice interaction length and time, then an adiabatic

approximation may be used, i.e. the propagation of X-rays

may be described in terms of a succession of perfect-crystal

solutions. This is the approach of the eikonal approximation.

When, at the other extreme, a spatial disturbance occurs on a

length scale that is much shorter than the lattice interaction

length, then perfect-crystal solutions may be joined al-

gebraically to each other. This is done, for example, when

wavevectors and amplitudes are matched across a surface of a

perfect crystal. Likewise, a very sudden change relative to the

lattice interaction time can be dealt with algebraically.

However, if the changes occur on length or time scales that are

comparable to the lattice interaction length or time, then a

fully wave±optical treatment becomes necessary.

The most challenging case is that of a spatio-temporal

disturbance of the crystal that is comparable to both the lattice

interaction length and the lattice interaction time. This kind of

disturbance is highly interesting for the ultrafast manipulation

of X-rays (Adams, 2002), which requires careful group-

velocity matching. To handle this case, the theory should treat

spatial and temporal coordinates in the same way.

APPENDIX D
Beyond the leading order

Practical applications in the subpicosecond manipulation of

X-rays may require very strong disturbances to the crystal

structure, making it necessary to go beyond the leading-order

perturbation terms.

1 The dispersion hyperbola of the two-wave case may be derived from
Fermat's principle, with minimal and maximal optical path lengths
simultaneously present (Adams, 1989).



One direction to explore is indicated at the end of x2: a

rapid change of the electron density implies a high velocity of

the electrons. Suppose, for example, that the electrons in a

noncentrosymmetric crystal are delocalized within 3 fs. This

means that there is a net motion of electrons (i.e. an un-

balanced current) of, say, 1 AÊ in 3 fs, and the resulting velocity

is 3� 104 m sÿ1, or 10ÿ4 of the speed of light, making the

Lorentz force marginally relevant.

Another issue is higher-order terms because equation (12)

was derived using only the leading-order terms of the distur-

bance and of ~A. To estimate the relative importance of the

next-to-leading-order terms identi®ed just before equation

(12), i.e. (i) second-order derivatives of ~A, (ii) products of ®rst-

order derivatives of u and ' with ®rst-order derivatives of ~A,

and (iii) ®rst-order derivatives of ~A multiplied with a Bloch

component of the electron density, consider the following:

according to equation (12), r ~Ah scales as �ru � h� ~Ah and

�re�hÿh0=k� ~Ah0 . Taking the gradient of all of these, we see that

the terms of types (i) to (iii) are all of roughly the same order

of magnitude, i.e. not apart from each other by an order of the

derivatives or a factor re�=k2 � 10ÿ6. An extension of equa-

tion (12) to include the next-to-leading-order terms will thus

have to include types (i) to (iii) and, in particular, all of

equation (11). The last term of that equation deserves some

special attention: in the course of propagation, the ®eld

amplitudes may develop a slight longitudinal component

because equation (10) results in a vector that is transverse to

kh� � km � r', and not to the wavevector kh� � r' of ~Ah.

Furthermore, equation (10) is de®ned locally and a changing

lattice orientation due to a displacement ®eld u also contri-

butes to longitudinal components. These longitudinal

components are of no consequence if only the leading-order

terms are considered. If, however, the next-to-leading-order

terms are also taken into account, then a longitudinal

component of ~Ah may enter through the last term in equation

(11).
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